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Ising model in small-world networks

Carlos P. Herrero
Instituto de Ciencia de Materiales, Consejo Superior de Investigaciones Cientı´ficas (C.S.I.C.), Campus de Cantoblanco,

28049 Madrid, Spain
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The Ising model in small-world networks generated from two- and three-dimensional regular lattices has
been studied. Monte Carlo simulations were carried out to characterize the ferromagnetic transition appearing
in these systems. In the thermodynamic limit, the phase transition has a mean-field character for any finite
value of the rewiring probabilityp, which measures the disorder strength of a given network. For small values
of p, both the transition temperature and critical energy change withp as a power law. In the limitp→0, the
heat capacity at the transition temperature diverges logarithmically in two-dimensional~2D! networks and as a
power law in 3D.
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I. INTRODUCTION

Complex networks describe many systems in nature
society, and have been modeled traditionally by rand
graphs@1#. In the last years, models of complex networ
have been introduced, motivated by empirical data in diff
ent fields@2#. In particular, small-world networks have bee
studied, as they are suitable to describe properties of phy
systems with underlying networks ranging from regular l
tices to random graphs, by changing a single parameter@3#.
Watts and Strogatz@4# proposed a model for this kind o
network, which is based on a locally highly connected re
lar lattice, in which a fractionp of the links between neares
neighbor sites are randomly replaced by new random lin
thus creating long-range ‘‘shortcuts.’’ The networks so ge
erated are suitable to study different kinds of physical s
tems, such as neural networks@5# and man-made commun
cation and transportation systems@4,6–8#.

These small-world networks interpolate between the t
limiting cases of regular lattices (p50) and random graph
(p51). In the small-world regime, a local neighborhood
preserved~as for regular lattices!, and at the same time som
global properties of random graphs are maintained. T
small-world effect is usually measured by the scaling beh
ior of the characteristic path length,, defined as the averag
of the shortest distance between two sites. For a rand
network one has a logarithmic increase of, with the network
sizeN ~i.e., the number of sites!, while for a d-dimensional
regular lattice one expects an algebraic increase:,;N1/d. In
contrast, for a small-world network,, follows the scaling
law @9–11#

,~N,p!;~N* !1/dF~N/N* !, ~1!

where the scaling functionF(u) has the limitsF(u);u1/d

for u!1 andF(u); ln u for u@1; N* ;p21 is a crossover
size that separates the large- and small-world regim
@9,12,13#. This indicates that the small-world behavior a
pears for any finite value ofp(0,p,1) as soon as the ne
work is large enough, and in particular the global charac
istics of the network are changed dramatically in t
presence of only a small fraction of shortcuts.
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The importance of this shorter global length scale h
been studied for several statistical physical problems
small-world networks. Among these problems, one finds
the literature the signal propagation speed@4#, the spread of
infections @14,15#, as well as site and bond percolatio
@15–17#. The localization-delocalization transition of ele
tron states has been also studied on quantum small-w
networks@18#.

Up to now, most of the published work on small world
has concentrated on networks obtained from o
dimensional lattices. Barrat and Weigt@10# and Gitterman
@19# have studied the crossover from one-dimensional~1D!
to mean-field behavior for the ferromagnetic Ising mod
which presents a phase transition of mean-field type for
value of the rewiring probabilityp.0, provided that the
system size is large enough. Close top50 the transition
temperatureTc goes to zero as 1/u log pu. A mean-field-type
behavior has also been found for theXY model in small-
world networks generated from one-dimensional chains@20#.

More recently, Svenson and Johnston@21# have studied
the damage spreading for Ising models on small-world n
works obtained by rewiring two-dimensional~2D! and three-
dimensional~3D! regular lattices. They found that these ne
works are more suitable than regular lattices to study so
systems with the Ising model.

Here we investigate the ferromagnetic transition for t
Ising model in small-world networks generated by rewiri
2D and 3D lattices. Contrary to the networks generated fr
1D lattices, now one has phase transitions at finite temp
turesTc.0 for p50. This means that one expects a chan
from an Ising-type transition atp50 to a mean-field-type
one in the small-world regime. We employ Monte Car
~MC! simulations to obtain average magnitudes for fini
size systems. The resulting quantities are extrapolated to
thermodynamic~infinite size! limit, where the small-world
behavior is expected to dominate the thermodynamic pr
erties for any finite value of the rewiring probabilityp.0.

In Sec. II, we describe the computational method. In S
III, we present results of the MC simulations along with
discussion. The paper closes with some concluding rem
in Sec. IV.
©2002 The American Physical Society10-1
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II. COMPUTATIONAL METHOD

We consider the following Hamiltonian:

H52(
i , j

Ji j SiSj , ~2!

whereSi561 (i 51, . . . ,N), and the coupling matrixJi j is
given by

Ji j [H J~.0!, if i and j are connected,

0, otherwise.
~3!

Monte Carlo simulations have been carried out on n
works of different sizes, generated from the 2D square
3D cubic lattices. Small-world networks were generated
randomly replacing a fractionp of the links of the regular
lattices with new random connections. This procedure ke
constant the total number of links in the rewired networ
Thus, the average coordination numberz in the 2D and 3D
cases amounts to four and six, respectively. In the rewir
process we avoided isolated sites~with zero links!. With this
procedure we obtained networks in which more than 99.
of the sites were connected in a single component~note that
a random graph has usually many components of var
sizes!. The remaining sites~when they appeared! were ex-
cluded from the final networks employed for the MC sim
lations. The size of the networks used in our calculations w
larger than the crossover sizeN* @13,16#, so that we were in
the small-world regime.

The largest networks employed here included 2003200
sites for the 2D system and 40340340 sites for the 3D
network. Periodic boundary conditions were assumed. S
pling of the configuration space has been carried out by
Metropolis local update algorithm@22#. Several thermody-
namic quantities and moments of the order parameter h
been calculated for different simulation-cell sizes. Finite-s
scaling was then employed to obtain the magnitudes co
sponding to the thermodynamic limit~extrapolation to infi-
nite size!. In the remainder of the paper, the presented val
for the different quantities will correspond to the extrap
lated ones, unless explicit mention is made indicating a p
ticular network size.

The ferromagnetic transition temperature has been de
mined by using Binder’s fourth-order cumulant@22#

UN~T![12
^M4&N

3^M2&N
2

, ~4!

where the magnetizationM of a given spin configuration is
given byM5( i 51

N Si /N. As an example, we present in Fig.
the cumulantUN as a function of temperature for differen
system sizes in the 3D case forp50.02. The transition tem
perature is obtained from the unique crossing point for
different sizesN.

The heat capacity per site,cv , was obtained from the
energy fluctuations at a given temperature, by using the
pression
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cv5
~DE!2

NkBT2
, ~5!

where (DE)25^E2&2^E&2.

III. RESULTS AND DISCUSSION

In Fig. 2, we present the transition temperatureTc as a
function of the rewiring probabilityp for 2D and 3D net-
works. Similar to the 1D case@10#, Tc changes fast close to
p50, and the derivativedTc /dp becomes smaller asp in-
creases. However, the sharp change ofTc for small p shows

FIG. 1. Fourth-order Binder’s cumulantUN as a function
of temperature for small-world networks generated from 3D cu
lattices with rewiring probabilityp50.02. Symbols represent dif
ferent system sizesN5L3: squares,L515; triangles, L520;
circles,L525; and diamonds,L530.

FIG. 2. Transition temperatureTc , normalized by the average
coordination numberz, as a function of the rewiring probabilityp
for small-world networks generated from 2D and 3D lattice
Dashed lines are guides to the eye.
0-2
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a behavior different than that found in the 1D case, wh
Tc;u log pu21. In the limit p51, one finds an increase inTc

as z rises from four~in 2D! to six ~in 3D!, as expected for
random lattices, for which one haskBTc /zJ→1 asz→`.

To analyze the change in critical temperature withp, we
call DTc5Tc2Tc

0 , being Tc
0 the transition temperature fo

the corresponding 2D or 3D regular lattice. In Fig. 3, w
show the dependence ofDTc uponp for the 2D and 3D case
in a log-log plot. In both cases we find thatDTc can be fitted
by a power-lawDTc;ps for p&0.01. The exponents is
0.5260.03 for 2D and 0.9660.04 for 3D. Our result for 2D
networks is compatible with aAp dependence forDTc near
p50, which means that the derivativedTc /dp diverges as
;1/Ap for p→0. In the 3D case, our results seem to in
cate a dependenceDTc;p for smallp. However, in this case
the lowestp values studied here may still be too high
attain the small-p regime~see below!.

Associated with the increase inTc as the rewiring prob-
ability p rises, one expects an increase in the critical ene
E(Tc). We callec5E(Tc)/N the critical energy per site, an
Dec5ec2ec

0 its change with respect to the regular latti
(p50). This differenceDec is shown in Fig. 4 as a function
of p for 2D ~squares! and 3D~circles! networks, in a log-log
plot. Forp&0.01, Dec can be well fitted in both cases by
power law of the formDec;pu. For the exponentu, we find
u50.4360.03 and 0.5660.04 in 2D and 3D, respectively.

A characterization of the ferromagnetic phase transition
these networks requires the determination of the universa
class to which it corresponds. In the limitp50 ~regular lat-
tices!, one has transitions of the 2D and 3D Ising type.
order to determine the type of the phase transition atp.0,
we have studied the critical exponentb, which gives the
temperature dependence of the order parameter close t
transition temperature:̂M &;(Tc2T)b for T,Tc . For the
different values of the rewiring probabilityp studied here, we
have calculated numerically the logarithmic derivative

FIG. 3. Dependence upon the rewiring probabilityp of the shift
in transition temperatureDTc with respect to the regular lattices, fo
2D and 3D networks. Lines are guides to the eye.
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m~ t !5
d log^M &

d log t
~6!

for t5Tc2T.0, which is related to the exponentb through
the limit b5 limt→0m(t).

In Fig. 5, we present results for the derivativem as a
function of temperature for several values ofp and for a 2D
network of size 2003200. For reference, we also prese
results of MC simulations forp50 ~Ising model on a regular
2D lattice! for the same system size, which converge tob
50.125, the critical exponent for the 2D Ising model. In a
casesp.0, the extrapolationT→Tc gives an exponentb
close to 0.5, the value corresponding to a mean-field-t

FIG. 4. Dependence on the probabilityp of the shift in critical
energy per siteDec with respect to the regular lattices, for 2D an
3D networks. Lines are guides to the eye.

FIG. 5. Logarithmic derivativem versus the temperature differ
encet5Tc2T for small-world networks generated by rewiring
2D lattice of size 2003200. Different symbols represent resul
obtained for several values of the rewiring probabilityp. From top
to bottom:p51, 0.1, 0.01, 0.001, and 0.
0-3



m
s;

si
te

lu

te
e
a

a
E

ld

as
s

a
n

as

t

a
e

n
n

io

iv
ee
f

w

rld

rks
t

tion

y

d
the

the
ti-

all-
g

C

lest

e

the

on

site

ent

an

D
r

ca-
m-
m-

CARLOS P. HERRERO PHYSICAL REVIEW E 65 066110
transition. However, for decreasingp, the observation of the
mean-field character of the transition requires to go to te
peratures closer toTc ~or equivalently to larger system size
see@22#!. Thus, forp50.001 we are still far from the value
0.5 at the temperatures at which the employed system
allows us to give a precise value for the order parame
^M &. But even in this case, the departure from the va
expected for a 2D Ising-type transition is clear close toTc .

A complementary way to confirm the mean-field charac
of the phase transition consists in determining the expon
n, which controls the behavior of the correlation length ne
the critical temperature

j;uT2Tcu2n. ~7!

Close toTc , this critical exponent is related to the temper
ture dependence of the fourth-order cumulant defined in
~4! as @20,22#

UN~T!'U* 1U1S 12
T

Tc
DN1/n, ~8!

with U* and U1 independent ofT and the system sizeN.
From this expression we have

DUN

DT
}2N1/n, ~9!

which allows us to calculate the exponentn from the cumu-
lant UN derived from the MC simulations. The values ofn
obtained by this method agreed in all cases~within error
bars! with the critical exponent corresponding to mean-fie
transitions:n50.5.

We conclude that the mean-field character of the ph
transition ~which is the one found in random network!
should appear in the thermodynamic limit for anyp.0. This
is in line with the observation mentioned above that the ch
acteristics of the random graphs~e.g., mean distance betwee
sites l; logN) show up in small-world networks as soon
their sizeN is large enough.

To understand the dependence onp of the transition tem-
peratureTc for small p, we will consider the two length
scales present in this problem. On one side we have
correlation lengthj, which nearTc follows the temperature
dependence given in Eq.~7!. On the other side, we have
length scale characteristic of the small-world network, giv
by the typical distance between ends of shortcuts:z
5(pz)21/d @16#. When the correlation length is smaller tha
z, the system behaves basically as a regular lattice. Whej
grows beyondz ~as happens when we approach the transit
temperature from above,T→Tc

1), the ‘‘long-range’’ interac-
tions introduced by the shortcuts come into play and g
rise to the mean-field behavior. Thus, the transition betw
the regular-lattice behavior and the mean-field one occurs
j'z. For the 1D Ising model, the correlation length at lo
temperatures (kBT!J) is given by j;exp(2J/kBT) @24#.
Taking into account that in this casez;1/p, the condition
j'z suggests a critical temperature for the 1D small-wo
Tc;u log pu21, in agreement with more
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detailed calculations for this system@10#. For the 2D
Ising model the correlation length nearTc scales as
j;uT2Tc

0u21 @23,24#, whereas nowz;1/p1/2. Then, using
the same argument, one expects for small-world netwo
generated from 2D lattices:Tc2Tc

0;p1/2, in good agreemen
with the results of our Monte Carlo simulations~see Fig. 3!.
Thus, it seems that in general, for systems with a correla
length diverging asuT2Tc

0u2n, the order-disorder transition
temperature for smallp depends on the rewiring probabilit
as

Tc2Tc
0;p1/nd. ~10!

Note that heren is the critical exponent of the considere
model in the regular lattice, not the one corresponding to
phase transition in the small-world network~which is the
mean-field one!. Hence, we see that the conditionj'z de-
scribes the transition between the large-world regime~which
corresponds to regular lattices! and the small-world one@13#,
as well as the ferromagnetic transition, indicating that
small-world transition and the order-disorder one are in
mately related.

The above argument, however, seems to fail for sm
world networks built up from 3D lattices. For the 3D Isin
model one has a critical exponentn'0.63 @24#, which
should give for smallp a dependence:DTc;p0.53, with an
exponent clearly smaller than that derived from our M
simulations, where we found forp&0.01: DTc;p0.96. It
seems that this discrepancy appears because the smalp
value employed in our simulations (p51023) is still too
large to observe the small-p behavior. Although for such
values ofp we are clearly in the small-world regime, th
corresponding value ofz in 3D (z;5), is too small to allow
the correlation length to reach the critical dependence of
Ising model in the regular lattice:j;uT2Tc

0u2n. In other
words, to observe thep dependence ofTc given in Eq.~10!,
one needsz values larger~i.e., smallerp values or larger
networks! than those employed here. A similar conclusi
was proposed for theXY model on 1D small-world networks
@20#, for which MC simulations gave a dependenceTc
'a log p1b ~with a and b numerical constants! instead of
Tc;p, expected from the above argument.

For mean-field-type transitions, the heat capacity per
cv shows a finite jump~not a divergence! at Tc . Given that
at p50 one has Ising-type phase transitions with diverg
heat capacity atTc , such a jump incv will diverge in the
limit p→0. The temperature dependence ofcv is displayed
in Fig. 6 for several values ofp and for networks built up
from a 2003200 2D lattice. As expected, one observes
increase in the maximum value ofcv asp is reduced.

The maximum value ofcv for eachp, extrapolated to the
thermodynamic limit, is shown in Fig. 7 for 2D and 3
small-world networks. In Fig. 7~a!, we present our results fo
2D, which for smallp display a logarithmic dependencecv

m

5a2b ln p, with the numerical constantsa51.7460.06 and
b50.2060.01. This logarithmic dependence of the heat
pacity can be explained by arguments similar to those e
ployed above to analyze the behavior of the transition te
0-4
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perature asp→0. For the Ising model in 2D regular lattice
the heat capacity nearTc

0 diverges as:cv(T);2 loguT2Tc
0u

@23#. Taking into account the relation betweenTc and p
given above for smallp, one finds for the 2D small-world
networkscv

m;2 log p, in agreement with the results of ou
Monte Carlo simulations.

In the 3D Ising model,cv has atTc
0 a singularity of the

form uT2Tc
0u2a, with a'0.12 @24#. Assuming thatTc2Tc

0

;p1/nd, as in Eq.~10!, one expects forcv
m close top50 a

power law of the form: cv
m;pw, with an exponentw

52a/nd520.063. In Fig. 7~b!, we present the values o
cv

m derived from our MC simulations as a function ofp in a
log-log plot. These results are consistent with a power-
dependencecv

m;pw at smallp. In fact, for p&0.01 our re-
sults can be fitted with an exponentw520.05760.005.
However, as in the case of the transition temperature
cussed above, smaller values ofp are necessary to determin
unambiguously this dependence from numerical simulatio
and in particular to find the exponentw.

IV. CONCLUDING REMARKS

We have studied the ferromagnetic transition that appe
for the Ising model in small-world networks generated fro
2D and 3D regular lattices. In these networks, the prese
of a small disorder (p.0) causes a change in the univers
ity class of the order-disorder transition, from Ising forp
50 to mean-field type forp.0.

Our results indicate that the order-disorder transition
curs at a temperatureTc where the spin correlation lengthj
is on the order of the lengthz ~typical distance between end
of shortcuts!, characteristic of these networks. In particul
close top50 this gives a dependenceTc;u log pu21 in 1D
networks, andTc2Tc

0;p1/nd for networks generated from
regular lattices of higher dimensions. This is the depende

FIG. 6. Heat capacity per sitecv versus temperature for smal
world networks generated from a 2D lattice of size 2003200. The
plotted curves correspond to different values of the rewiring pr
ability p, as indicated by the labels.
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found from our Monte Carlo simulations for 2D networks.
the 3D case we find a power law forTc2Tc

0 , but the deter-
mination of the actual exponent from MC simulations forp
→0 requiresp values smaller~i.e., networks larger! than
those employed here.

From the results presented in this paper, it is clear t
there is a close relation between the small-world transit
and the order-disorder transition in this kind of network.
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FIG. 7. Maximum value of the heat capacity per sitecv
m as a

function of the rewiring probabilityp. Symbols correspond to the
extrapolation of finite-size results toN→`. ~a! 2D networks, in a
semilogarithmic plot;~b! 3D networks, in a log-log plot. Dashe
lines are guides to the eye.
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