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Ising model in small-world networks
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The Ising model in small-world networks generated from two- and three-dimensional regular lattices has
been studied. Monte Carlo simulations were carried out to characterize the ferromagnetic transition appearing
in these systems. In the thermodynamic limit, the phase transition has a mean-field character for any finite
value of the rewiring probabilityp, which measures the disorder strength of a given network. For small values
of p, both the transition temperature and critical energy change pvéth a power law. In the limip—0, the
heat capacity at the transition temperature diverges logarithmically in two-dimen&@)atetworks and as a
power law in 3D.
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[. INTRODUCTION The importance of this shorter global length scale has
been studied for several statistical physical problems on
Complex networks describe many systems in nature andmall-world networks. Among these problems, one finds in
society, and have been modeled traditionally by randomnhe literature the signal propagation sp§é{l the spread of
graphs[1]. In the last years, models of complex networksinfections [14,15, as well as site and bond percolation
have been introduced, motivated by empirical data in differ{15-17. The localization-delocalization transition of elec-
ent fields[2]. In particular, small-world networks have been ron states has been also studied on quantum small-world
studied, as they are suitable to describe properties of physicgktworks[18].
systems with underlying networks ranging from regular lat- Up to now, most of the published work on small worlds
tices to random graphs, by changing a single parani8ier a5 concentrated on networks obtained from one-
Watts and Strogatz4] proposed a model for this kind of i engional lattices. Barrat and Weift0] and Gitterman

network, which is based on a locally highly connected regu[lg] have studied the crossover from one-dimensidal)

lar lattice, in which a fractio of the links between nearest- "o, field behavior for the ferromagnetic Ising model,
neighbor sites are randomly replaced by new random links

thus creating long-range “shortcuts.” The networks so gen—\}VhiCh presents a_p_hase transi_t_ion of mean-field type for any
erated are suitable to study different kinds of physical Sysyalue of .the rewiring probabilityp>0, provided that. .the
tems, such as neural networl& and man-made communi- system size is large enough. Closefge-0 the t'ransmon
cation and transportation systelf#s6—§. tempe_ratureTC goes to zero as [logp|. A mean-fleld-type
These small-world networks interpolate between the twd*€havior has also been found for tX&/ model in small-
limiting cases of regular latticepE0) and random graphs World networks generated from one-dimensional chp.
(p=1). In the small-world regime, a local neighborhood is More recently, Svenson and Johns{@i] have studied
preservedas for regular latticesand at the same time some the damage spreading for Ising models on small-world net-
global properties of random graphs are maintained. Th&vorks obtained by rewiring two-dimension@D) and three-
small-world effect is usually measured by the scaling behavdimensional3D) regular lattices. They found that these net-
ior of the characteristic path length defined as the average works are more suitable than regular lattices to study social
of the shortest distance between two sites. For a randomystems with the Ising model.
network one has a logarithmic increasefo#ith the network Here we investigate the ferromagnetic transition for the
sizeN (i.e., the number of sit¢swhile for ad-dimensional Ising model in small-world networks generated by rewiring
regular lattice one expects an algebraic increéseN®. In 2D and 3D lattices. Contrary to the networks generated from
contrast, for a small-world networlk(, follows the scaling 1D lattices, now one has phase transitions at finite tempera-
law [9-11] turesT.>0 for p=0. This means that one expects a change
from an Ising-type transition gp=0 to a mean-field-type
€(N,p)~(N*)™F(N/N*), (1)  one in the small-world regime. We employ Monte Carlo
(MC) simulations to obtain average magnitudes for finite-
where the scaling functioff (u) has the limitsF(u)~ud size systems. The resulting quantities are extrapolated to the
for u<1 andF(u)~Inuforu>1; N*~p~lis acrossover thermodynamidinfinite size limit, where the small-world
size that separates the large- and small-world regimebehavior is expected to dominate the thermodynamic prop-
[9,12,13. This indicates that the small-world behavior ap- erties for any finite value of the rewiring probabilipz>0.
pears for any finite value gf(0<p<1) as soon as the net- In Sec. Il, we describe the computational method. In Sec.
work is large enough, and in particular the global characterill, we present results of the MC simulations along with a
istics of the network are changed dramatically in thediscussion. The paper closes with some concluding remarks
presence of only a small fraction of shortcuts. in Sec. IV.
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Monte Carlo simulations have been carried out on net- 0~ g ~oo
works of different sizes, generated from the 2D square and 0 i3 : 4'6 : 4'7 : 78
3D cubic lattices. Small-world networks were generated by ’ ' '
randomly replacing a fractiop of the links of the regular kgT/J

lattices with new random connections. This procedure keeps
constant the total number of links in the rewired networks.
Thus, the average coordination numizén the 2D and 3D
cases amounts to four and six, respectively. In the rewirin
process we avoided isolated sit@gth zero linkg. With this
procedure we obtained networks in which more than 99.9
of the sites were connected in a single comporieate that
a random graph has usually many components of various
sizes. The remaining sitegswhen they appeare¢dvere ex-
cluded from the final networks employed for the MC simu- ) ) )
lations. The size of the networks used in our calculations wa¥here QE)=(E")—(E)*.

larger than the crossover sikE [13,16], so that we were in

the small-world regime. III. RESULTS AND DISCUSSION

The largest networks employed here included 2@00 In Fig. 2, we present the transition temperatiiteas a

sites for the 2D system and #Gl0x 40 sites for the 3D function of the rewiring probabilityp for 2D and 3D net-

network. Periodic boundary conditions were assumed. SamWorks. Similar to the 1D casi0], T, changes fast close to

ling of the configuration space has been carried out by the L .
I?/Iet?opolis local ?deate algoritherZ]. Several thermod))//— P=0, and the derivativelT,/dp becomes smaller 3s in-
namic quantities and moments of the order parameter have €2s€s- However, the sharp changd ofor smallp shows
been calculated for different simulation-cell sizes. Finite-size
scaling was then employed to obtain the magnitudes corre-
sponding to the thermodynamic limiextrapolation to infi- R
nite size. In the remainder of the paper, the presented values 3D o
for the different quantities will correspond to the extrapo- ’ - -
lated ones, unless explicit mention is made indicating a par- o B
ticular network size. o8k 2~ -

The ferromagnetic transition temperature has been deter-
mined by using Binder’s fourth-order cumuldr2?]

FIG. 1. Fourth-order Binder’s cumulanty as a function
of temperature for small-world networks generated from 3D cubic
lattices with rewiring probabilityp=0.02. Symbols represent dif-
Qerent system sizefN=L3: squares,L=15; triangles, L=20;
0/gircles,L=25; and diamondd, = 30.
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where the magnetizatioll of a given spin configuration is
given byM =Ei’\‘=1$i IN. As an example, we present in Fig. 1 05 . . . .
the cumulantUy as a function of temperature for different "0 02 04 06 08 1
system sizes in the 3D case for=0.02. The transition tem-
perature is obtained from the unique crossing point for the p
different sizesN. FIG. 2. Transition temperatur€., normalized by the average
The heat capacity per site,, was obtained from the coordination numbeg, as a function of the rewiring probability
energy fluctuations at a given temperature, by using the eXor small-world networks generated from 2D and 3D lattices.
pression Dashed lines are guides to the eye.
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FIG. 3. Dependence upon the rewiring probabiptef the shift FIG. 4. Dependence on the probabilpyof the shift in critical
in transition temperaturA T, with respect to the regular lattices, for energy per site\e. with respect to the regular lattices, for 2D and
2D and 3D networks. Lines are guides to the eye. 3D networks. Lines are guides to the eye.

dlog(M)

a behavior different than that found in the 1D case, where
dlogt

T.~|logp| ™% In the limit p=1, one finds an increase
asz rises from four(in 2D) to six (in 3D), as expected for
random lattices, for which one h&gT./zJ—1 asz— .

To analyze the change in critical temperature withwe
call AT,=T.— T2, being T? the transition temperature for
the corresponding 2D or 3D regular lattice. In Fig. 3, we
show the dependence AfT . uponp for the 2D and 3D cases
in a log-log plot. In both cases we find thaT; can be fitted
by a power-lawAT.~p® for p<0.01. The exponens is
0.52+0.03 for 2D and 0.96 0.04 for 3D. Our result for 2D
networks is compatible with &p dependence foA T, near
p=0, which means that the derivativkl./dp diverges as
~1/+/p for p—0. In the 3D case, our results seem to indi-

u(t)= (6)

for t=T.—T>0, which is related to the expone@tthrough
the limit B=Ilim;_,qu(t).

In Fig. 5, we present results for the derivatiye as a
function of temperature for several valuespénd for a 2D
network of size 208 200. For reference, we also present
results of MC simulations fop=0 (Ising model on a regular
2D lattice) for the same system size, which convergegto
=0.125, the critical exponent for the 2D Ising model. In all
casesp>0, the extrapolatioriT—T. gives an exponenB
close to 0.5, the value corresponding to a mean-field-type

cate a dependenceT .~ p for smallp. However, in this case 06 SV
the lowestp values studied here may still be too high to 2D - 200 x 200 p=1
attain the smalp regime(see below: 03[  tevtypatonsoonacone, |
Associated with the increase . as the rewiring prob- Foay
ability p rises, one expects an increase in the critical energy 5 04} ‘\.x %‘%.Q -
E(T.). We calle;=E(T.)/N the critical energy per site, and N “a %o, 0.1
Aec=ec—e2 its change with respect to the regular lattice = 03k s, %""’-o i
(p=0). This differenceAe, is shown in Fig. 4 as a function _g A “‘A“ o
of p for 2D (squaresand 3D(circles networks, in a log-log o "\b ",
plot. Forp=<0.01, Ae. can be well fitted in both cases by a A o2p o 0.001 A’*AM 0.0l i
power law of the formAe,~ p". For the exponent, we find Q"‘ao oo "-AA.A.;A
u=0.43+0.03 and 0.5 0.04 in 2D and 3D, respectively. 0.1} ““ﬂﬂ-u-uu-u.uf:.‘:;%gg%% a
A characterization of the ferromagnetic phase transition in p=0 SUSEeRg
these networks requires the determination of the universality 0 . , , , .
class to which it corresponds. In the lint=0 (regular lat- 0 01 02 03 04 05 06
tices, one has transitions of the 2D and 3D Ising type. In ket/J

order to determine the type of the phase transitiop-a0,
we have studied the critical exponefit which gives the FIG. 5. Logarithmic derivative: versus the temperature differ-
temperature dependence of the order parameter close to tBfcet=T,~T for small-world networks generated by rewiring a
transition temperaturgtM )~ (T.—T)# for T<T.. For the 2D lattice of size 208 200. Different symbols represent results
different values of the rewiring probabilifystudied here, we obtained for several values of the rewiring probabifityFrom top
have calculated numerically the logarithmic derivative to bottom:p=1, 0.1, 0.01, 0.001, and 0.
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transition. However, for decreasimg the observation of the detailed calculations for this systef0]. For the 2D
mean-field character of the transition requires to go to temising model the correlation length neaf, scales as
peratures closer t@, (or equivalently to larger system sizes; §~|T—T2|‘1 [23,24], whereas now ~1/p*2. Then, using
see[22]). Thus, forp=0.001 we are still far from the value the same argument, one expects for small-world networks
0.5 at the temperatures at which the employed system sizgenerated from 2D Iattice§'t—T2~ p*2 in good agreement
allows us to give a precise value for the order parameteyyith the results of our Monte Carlo simulatiofsee Fig. 3.
(M). But even in this case, the departure from the valueThus, it seems that in general, for systems with a correlation
expected for a 2D Ising-type transition is clear closd'{o  |ength diverging a3T—T2|~*, the order-disorder transition

A complementary way to confirm the mean-field charactetemperature for smafp depends on the rewiring probability
of the phase transition consists in determining the exponergg

v, which controls the behavior of the correlation length near
the critical temperature Y
P T~ To~pd, (10

E~[T=Te ™" () . = ,
Note that herev is the critical exponent of the considered

Close toT,, this critical exponent is related to the tempera-model in the regular lattice, not the one corresponding to the
ture dependence of the fourth-order cumulant defined in Egphase transition in the small-world netwofWwhich is the
(4) as[20,22 mean-field ong Hence, we see that the conditigh=¢ de-
scribes the transition between the large-world regimleich
corresponds to regular lattigemnd the small-world onfl3],
as well as the ferromagnetic transition, indicating that the
small-world transition and the order-disorder one are inti-
with U* and U, independent ofl and the system sizh.  mately related.
From this expression we have The above argument, however, seems to fail for small-
world networks built up from 3D lattices. For the 3D Ising
model one has a critical exponemt=0.63 [24], which
should give for smalp a dependenceAT.~p®>3 with an
exponent clearly smaller than that derived from our MC
which allows us to calculate the exponenfrom the cumu-  simulations, where we found fqr=<0.01: AT.~p®%. It
lant Uy, derived from the MC simulations. The values of ~seems that this discrepancy appears because the snmallest
obtained by this method agreed in all cagesthin error  value employed in our simulationg €10 %) is still too
barg with the critical exponent corresponding to mean-fieldlarge to observe the small-behavior. Although for such
transitions:y=0.5. values ofp we are clearly in the small-world regime, the

We conclude that the mean-field character of the phaseorresponding value af in 3D ({~5), is too small to allow
transition (which is the one found in random netwoyks the correlation length to reach the critical dependence of the
should appear in the thermodynamic limit for amy-0. This  Ising model in the regular latticeé~|T—T2| . In other
is in line with the observation mentioned above that the charwords, to observe thp dependence of ;. given in Eq.(10),
acteristics of the random grapfesg., mean distance between one need< values larger(i.e., smallerp values or larger
sitesl ~logN) show up in small-world networks as soon as networkg than those employed here. A similar conclusion
their sizeN is large enough. was proposed for thEY model on 1D small-world networks

To understand the dependencepaf the transition tem- [20], for which MC simulations gave a dependente
peratureT, for small p, we will consider the two length ~alogp+b (with a and b numerical constantsinstead of
scales present in this problem. On one side we have th€.~p, expected from the above argument.
correlation lengthé, which nearT, follows the temperature For mean-field-type transitions, the heat capacity per site
dependence given in E@7). On the other side, we have a c, shows a finite jumgnot a divergenceat T.. Given that
length scale characteristic of the small-world network, givenat p=0 one has Ising-type phase transitions with divergent
by the typical distance between ends of shortcufs: heat capacity al., such a jump inc, will diverge in the
=(p2)~ Y@ [16]. When the correlation length is smaller than limit p—0. The temperature dependencecpfis displayed
¢, the system behaves basically as a regular lattice. Whenin Fig. 6 for several values gb and for networks built up
grows beyond (as happens when we approach the transitiorfrom a 200< 200 2D lattice. As expected, one observes an
temperature from abova,—T_), the “long-range” interac-  increase in the maximum value of asp is reduced.
tions introduced by the shortcuts come into play and give The maximum value o€, for eachp, extrapolated to the
rise to the mean-field behavior. Thus, the transition betweethermodynamic limit, is shown in Fig. 7 for 2D and 3D
the regular-lattice behavior and the mean-field one occurs fosmall-world networks. In Fig. (8), we present our results for
é~(. For the 1D Ising model, the correlation length at low 2D, which for smallp display a logarithmic dependencf'
temperatures KgT<<J) is given by &é~exp(2/kgT) [24]. =a—DbInp, with the numerical constangs=1.74+0.06 and
Taking into account that in this cage-1/p, the condition b=0.20+0.01. This logarithmic dependence of the heat ca-
&~ { suggests a critical temperature for the 1D small-worldpacity can be explained by arguments similar to those em-
T.~|logp| %, in agreement with more ployed above to analyze the behavior of the transition tem-

1— Tl) Nl/V, (8)

c

UN(T)MU*‘l‘Ul

AUN 1/v
a7 N ©)
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FIG. 6. Heat capacity per sitg, versus temperature for small- 4 ’ ’
world networks generated from a 2D lattice of size @D0. The (b)
plotted curves correspond to different values of the rewiring prob- :Z\g\;
ability p, as indicated by the labels. 3ir \§\§\ 3D
3.
perature ap— 0. For the Ising model in 2D regular lattices, N
the heat capacity nedf> diverges asc,(T)~ —logT—TJ -~ \g\
[23]. Taking into account the relation betwedn and p £s 2T \ .
given above for smalp, one finds for the 2D small-world © \§\
networksc,'~ —logp, in agreement with the results of our - Y
Monte Carlo simulations. Y
In the 3D Ising modelg, has atTg a singularity of the %
form |T—T2|~¢, with @~0.12[24]. Assuming thafl;—T° \
~pY"d as in Eq.(10), one expects foc!" close top=0 a
M __ AW H 1 1 1
power law of the form:c,~p", with an exponentw 0.001 0.01 o1 ]

=—al/vd=—0.063. In Fig. Tb), we present the values of
ci' derived from our MC simulations as a function pfn a P
log-log plot. These results are consistent with a power-law

m__ W -
dependence, .p at §mal|p. In fact, fo_r p50.01+0ur re function of the rewiring probabilityp. Symbols correspond to the
sults can be fitted with an exponemt=—0.057+0.005. extrapolation of finite-size results fd— . (a) 2D networks, in a

However, as in the case of the transition temperature dissemjlogarithmic ploti(b) 3D networks, in a log-log plot. Dashed
cussed above, smaller valuespoére necessary to determine jines are guides to the eye.

unambiguously this dependence from numerical simulations,
and in particular to find the exponewt

FIG. 7. Maximum value of the heat capacity per siff as a

found from our Monte Carlo simulations for 2D networks. In
the 3D case we find a power law fEFrC—TS, but the deter-
mination of the actual exponent from MC simulations for

We have studied the ferromagnetic transition that appears’0 requiresp values smaller(i.e., networks largerthan
for the Ising model in small-world networks generated fromthose employed here. o o
2D and 3D regular lattices. In these networks, the presence From the results presented in this paper, it is clear that
of a small disorder §>0) causes a change in the universal-there is a Close_ relation betyyeen the_ small-world transition
ity class of the order-disorder transition, from Ising for and the order-disorder transition in this kind of network.
=0 to mean-field type fop>0.

Our results indicate that the order-disorder transition oc-
curs at a temperatufg; where the spin correlation length
is on the order of the length (typical distance between ends  The author benefited from useful discussions with M. A.
of shortcut$, characteristic of these networks. In particular,R. de Cara and M. Saboya. Thanks are due to E. Ghémo
close top=0 this gives a dependende~|logp| ' in 1D critically reading the manuscript. This work was supported
networks, andT,—T2~p*" for networks generated from by CICYT (Spain under Contract No. PB96-0874, and by
regular lattices of higher dimensions. This is the dependencBGESIC through Project No. 1FD97-1358.

IV. CONCLUDING REMARKS
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